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ABSTRACT: This work presents an experimental design methodology combined with computational simulation to correlate the influ-

ence of operational conditions and reactants charge in the numeric average molecular weight (MWN) as well as on monomer conver-

sion (XCL), for the hydrolytic polymerization of nylon-6 in a semibatch reactor. It evaluated the reaction temperature, the pressure

profile, and the proportion of reactants in the charge. Experimental design was used to screen the most statistically significant variables

and to develop a reliable predictive model for each response. The combined use of the models can be applied for process optimization,

by establishing MWN and maximum XCL as objective functions. Responses surface allowed the visualization of the responses behavior

when changing the independent variables and therefore to identify the optimal tendencies. This work demonstrates that such method-

ology can be applied for optimization of complex processes like the hydrolytic polymerization of nylon-6. This polymerization has

many side reactions occurring at the same time, which are sensitive to different profiles of pressure and temperature that are applied.

This evaluation is quite interesting as such profiles are necessary to perform the several polymerization steps and have a significant

impact on product characteristics and therefore in its applications. VC 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 000: 000–000, 2012
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INTRODUCTION

Nylon is considered the first polymer in the category of engi-

neering plastics and still remains as one of the most important

since its discovery, in 1935. It is widely used as raw material in

the fibers and engineering plastics manufacturing and its appli-

cation includes many different sectors, like textiles, automobiles,

electrical appliances, among others.1 Nylon 6 is the most manu-

factured polyamide, however most of its production ends in the

fibers market, which is already saturated; thus, it is necessary to

find new applications for polyamides as engineering plastics. As

far as process is concerned, there are two main routes for ny-

lon-6 polymerization, namely anionic and hydrolytic. The

hydrolytic route is the more used for commercial production.1

To have a final product with desired properties, it is necessary

to have a better comprehension of the polymerization process,

including the reactor performance, and this can be performed

through mathematical modeling and computer simulation.

Wajge et al.2 studied the simulation of a semibatch reactor using

water and e-caprolactam and predicted several molecular

characteristics of the polymer; however, they were related to

characterizing parameters of the reactor, like mass and heat

transfer, reaction kinetics, and jacket fluid temperature. Tang

et al.3 simulated the hydrolytic polymerization of e-caprolactam
using bifunctional regulators and analyzed characteristic data of

the polymerization like conversion, polydispersity index (PDI),

average molecular weight, and species concentration; it was

found that the presence of more bifunctional acid decreases

the PDI while, in the case of monofunctional acid, the PDI

asymptotically reaches a value of 2 regardless of the amount of

monofunctional acid initially added. Mitra et al.4 developed a

procedure for the optimization of industrial semibatch nylon-6

reactor using Sequential Quadratic Programming and Nondo-

minated Sorting Genetic Algorithm. The former method was

used to get optimum values for constants, the latter, to obtain

improved multiobjective Pareto optimal solutions for three

grades of nylon 6. It was used two continuous variables (vapor

releasing and jacket temperature) as optimizing variables.

Agrawal et al.5 simulated the nylon-6 hydrolytic polymerization

in a VK tube (vertical column) using a plug-flow model and an

empirical vapor-liquid equilibrium relation to predict water

profile; the predicted values of conversion, molecular weight,

VC 2012 Wiley Periodicals, Inc.
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and end group concentrations from the developed model indi-

cated a good agreement with experimental data. Seavey et al.6

presented a thermodynamically consistent model for the phase

equilibrium of water/caprolactam/nylon-6 mixtures based on

the poly-NRTL 6 and validated the interaction parameters by

performing exploratory simulations of commercial manufactur-

ing processes. The model was applied to simulate a melt train

and a bubble-gas kettle train for industrial production of nylon-

6. Ramteke and Gupta7 studied the hydrolytic nylon-6 step-

growth polymerization in a semibatch reactor near industrial

conditions. It was found that either PolyNRTL or PolyNRF

models can be used to describe the vapor–liquid equilibrium.

Simulations with tuned parameters have given reasonable agree-

ment for monomer conversion, conversion of water extractibles,

and number average chain length.

Experimental design has been successfully applied in polymer-

ization studies to correlate process conditions to conversion and

polymer properties. Costa et al.8 used computational simulation

and experimental design to correlate polymer properties to

operational parameters in a nylon-6 polymerization in a contin-

uous reactor. Chen9 used this technique to investigate the influ-

ence of chemical oxidation polymerization conditions (time,

reactants proportion, and temperature) on the yields of polyani-

line powder. Guanaes et al.10 evaluated the influence of poly-

merization conditions on the molecular weight and polydisper-

sity of polyepichlorohydrin using a factorial design. Lima

et al.11 studied the free radical solution copolymerization of

methyl methacrylate and vinyl acetate in a continuous stirred

tank reactor. The factorial planning was used to discriminate

the variables with higher impact on the process performance

(effects). There were seven process variables and four exits to be

evaluated; the screened variables were used to build up a

dynamic model based on the functional fuzzy relationship of

Takagi–Sugeno type.

As observed, there is a considerable amount of research directed

toward analysis, modeling, and simulation of polymerization

systems in many kinds of reactors; however, there is still no

studies that use experimental design and response surface analy-

sis techniques combined with computational simulation to cor-

relate the influence of operational conditions and reactants

charge at the final product properties and process performance

(measured by the monomer conversion) in semibatch reactor.

The potential advantage of such approach coupling experimen-

tal design and response surface analysis with computational

simulation is due to the fact that detailed process model may be

used to find out optimal and feasible operating regions without

considering all the restrictions and process peculiarities.

Bearing this in mind, this work presents the study of the effects

of the process variables and feed conditions on the e-caprolac-
tam conversion (XCL) and nylon-6 number average molecular

weight (MWN) in a semibatch reactor through hydrolytic

polymerization route. The modeling was based on a nylon-6

polymerization reactor operated on semibatch mode used for

polymer research at Biofabris Institute/University of Campinas/

Brazil. Responses were obtained by computational simulation

using the software Aspen Polymer Plus
VR
7.4 (Aspen Technology,

Burlington, Massachusetts, USA), and experimental design was

used to measure factors effects on responses. The analyses were

made with the software Statistica 7.0 (Statsoft, Tulsa, OK, USA).

Simplified, although statistically representative, models for

responses prediction, considering the most important factors

(that means process variables), are presented. The main objec-

tives of this work are: (1) to screen the main parameters affect-

ing the monomer conversion (XCL) and MWN in the hydrolytic

polymerization of nylon-6 in a semibatch reactor, (2) to gener-

ate models for XCL and MWN prediction considering the signif-

icant parameters, and (3) to analyze the MWN and XCL behav-

iors by Response Surface Methodology (RSM).

PROCESS SIMULATION

In the kinetic scheme, the following reactions were considered:

ring opening of monomer by water, monomer polyaddition,

cyclic dimer (CD) ring opening, CD polyaddition, and acetic

acid terminator. The scheme for reactions not involving chain

terminators, accepted as standard when regarding e-caprolactam
hydrolytic polymerization, was proposed by Arai et al.12 The

acetic acid chain terminator reaction is the same proposed for

Gupta and Kumar.13

The modeling approach was expressed in terms of end func-

tional groups and can be found in Table I. All reactions in ny-

lon-6 polymerization takes place under two conditions: uncata-

lyzed or catalyzed by acid groups (ACOOH), both are taking

into account in the rate constant expression. Parameters for rate

and equilibrium constants, fitted by Arai et al.12 can be found

in Table II. Table III presents the species balance in function of

the rates from Table I.

Usually, nylon-6 hydrolytic polymerization is studied taking

into account a common industrial configuration based on a

continuous process with two reactors. The first one works with

high pressure, low temperature, and high water content, pre-

venting devolatilization and promoting oligomers formation.

The second one has higher temperature and low pressure to

stimulate water removing and, consequently, chain growing by

polycondensation reactions. In the semibatch process, this is

adapted by introducing profiles of pressure (high in the begin-

ning and vacuum in the last stage) and temperature (ramp

heated until temperature reaction). This reactor configuration is

interesting to provide more flexibility aiming the development

of polymers with specific properties.

The configuration of the reactor considered in this study is

shown schematically in Figure 1. The semibatch polymerization

reactor consists of a jacketed vessel with an agitator, one stream

for vapor releasing and another to collect the final product. The

feed consists of the monomer e-caprolactam (CL), water (W),

and acetic acid (AA), used as chain terminator. Vapor stream is

composed by CL, W, and AA. The process has a total opera-

tional time of 6 h and works with temperature and pressure

profiles, starting at room conditions: temperature of 25�C and

pressure of 1 kgf/cm2. In Aspen Polymer Plus, the RBatch vessel

was used to simulate the process.

There is a nitrogen inlet in the experimental process for pres-

sure built in and to avoid thermal-oxidation reactions, but it

was not used in the simulation because the Aspen Plus
VR

can
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achieve the specified pressure without this stream and the

atmosphere is considered inert.

The configuration of the RBatch vessel allows only two types of

inlet streams: one for the charge and one for continuous feed. If

the latter were used for the nitrogen feed, it should be defined

in the flow profile, which is unknown. As the simulator does

not work with the volume of the reactor, it is not possible to

specify the initial quantity of N2 in the process neither the

needed flow to reach defined pressures.

The PolyNRTL method was adopted for physical properties cal-

culation in the simulator. It is based on PolyNTRL activity coef-

ficients model and Redlinch–Kwong equation of state for calcu-

lation of vapor-phase fugacity coefficients. Details about this

methodology and estimated parameters for nylon-6 hydrolytic

process can be found at Seavey et al.6

FACTORIAL DESIGN APPLIED TO NYLON 6 HYDROLYTIC
POLYMERIZATION IN A SEMIBATCH PROCESS

Full factorial designs are important means to evaluate the influ-

ence of the factors on responses; however, they have the incon-

venience of requiring too many runs when working with a great

number of factors. This occurs because the amount of runs

increases exponentially with the number of involved variables.

The greater the number of variables involved, the higher the

Table I. Reactions and its Rates for Nylon-6 Polymerization

Equilibrium reaction Reaction rate

Ring opening

Wþ CL ,k1
k01¼

k1
K1

P1
R1 ¼ k1.[CL][W] � k0

1[P1]

Polycondensation

P1 þ P1 ,k2
k0
2
¼k2

K2

T-COOH : T-NH2 þW R2 ¼ k2.[P1]2 � k0
2[P1][W]

P1 þ T-COOH ,k2
k02¼

k2
K2

T-COOH : B�ACA þ W R3 ¼ k2½P1�½T-COOH� � k02½W�½T-COOH�
 

½B�ACA�
½B�ACA� þ ½T�NH2�

!

P1 þ T-NH2 ,k2
k02¼

k2
K2

T-NH2 : B�ACAþ W R4 ¼ k2½P1�½T�NH2� � k2
0½W�½B�ACA�

 
½B�ACA�

½B�ACA� þ ½T�COOH�

!

T�COOHþ T�NH2 ,k2
k0
2
¼k2

K2

B�ACA : B�ACAþW R5 ¼ k2½T�COOH�½T�NH2� � k2
0½W�½B�ACA�

 
½B�ACA�

½B�ACA� þ ½T�NH2�

!

Polyaddition of e-caprolactam

CLþ P1 ,k3
k0
3
¼k3

K3

T�NH2 : T�COOH R7 ¼ k3½CL�½T�NH2��k
0
3

 
½B�ACA�

½B�ACA� þ ½T�COOH�

!

CLþ T�NH2 ,k3
k03¼

k3
K3

T�NH2 : B�ACA R6 ¼ k3[CL][P1]�k0
3[P2]

Polyaddition of cyclic dimer

CDþW ,k4
k04¼

k4
K4

T-NH2 : T-COOH
R8 ¼ k4[CD][W]�k0

4[P2]

CDþ P1 ,k5
k05;m¼

k5
K5

T-NH2 : B�ACA : T-COOH R9 ¼ k5[CD][P1]�k
0
5[P3]

CDþ T�NH2 ,k5
k05;m¼

k5
K5

T-NH2 : B�ACA : B�ACA R10 ¼ k5½CD�½T�NH2��k
0
5½T�NH2�:

 
½B�ACA�

½B�ACA� þ ½T�COOH�

!

Polycondensation of acetic acid

P1 þ AA ,k2
k02¼

k2
K2

T�COOH : T�AA þ W R11 ¼ k2:½P1�:½AA��k
0
2:½W�½T�AA�:

 
½T�COOH�

½B�ACA� þ ½T�COOH�

!

T�NH2 þ AA ,k2
k0
2
¼k2

K2

B�ACA : T�AA þ W R12 ¼ k2 AA½ �:½T�NH2��k
0
2: W½ � T�AA½ � ½B�ACA�

½B�ACA� þ ½T�COOH�

! 
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chances of some variables did not affect significantly the

responses. Therefore, it is interesting to screen the most signifi-

cant factors before running the full factorial design when there

are too many options to be studied; an option is the fractional

factorial design.

Fractional factorial designs are experimental designs consisting

of a chosen fraction of the experimental runs of a full factorial

design that provides almost the same information with only a

fraction of runs. There is a lot of information about the highest

order interactions (depending of the resolution), but they are

hard to be interpreted and, in general, are not significant. The

resolution indicates the ability of the design to separate main

effects and low-order interactions from each other. To represent

the fractional designs, the notation lk-p is used, where l is the

number of levels of each investigated factor, k is the number of

factors, and p describes the size of the fraction of the full facto-

rial used.14

For screening purposes, the influences of process and feed con-

ditions on e-caprolactam conversion (XCL) and MWN were

evaluated by using of four fractional factorial designs of two

levels plus one central point. The central point is usually used

with repetition for error estimation; however, only one point

was used in this case because there are no reproducibility errors

in computer simulations. Level zero values were defined based

on real procedures developed by Costa15 and performed in the

experimental unit for nylon-6 polymerization previously men-

tioned in this work.

The objective of the first design, 26–2, was to evaluate all the

feed and process variables, individually. The charging variables

were the initial charge of e-caprolactam (mCL), water (mW), and

acetic acid (mAA). The process variables used were: pressure in

the high pressure stage (HP), pressure in the vacuum stage

(LP), and reaction temperature (T), defined as the maximum

value in the temperature profile. Values for each level are pre-

sented in Table IV.

A process temperature profile with four stages was established.

The process starts at room temperature (25�C), reaches the

temperatures T1 h in 1 h, T2 h at 2 h and T3 h in 3 h, value that

is kept constant until the end of the reaction. Once T is set, T2

h is calculated as 110�C below T, and T1 h as 90�C below T2 h.

Table V contains the simulated temperature profiles in each

reaction temperature (T) level (valid for all fractional designs).

The pressure profile has five stages. Initially, the pressure is

maintained at 1 kgf/cm2 for 1 h. Then, it is increased and

reaches HP value after 2 h of reaction. After 1.5 h of constant

pressure, the pressure ramps down for 0.5 h until reaches LP

Table II. Rate and Equilibrium Constants (Arai et al.12)

Rate constant expression: ki ¼ Ai
0 � exp

�
� E0

i

RT

�
þ Ac

i � exp
�
� Ec

i

RT

�
� ½�COOH� ði ¼ 1; 2;…; 5Þ;

Equilibrium constant expression: Ki ¼ ki
k0
i

¼ exp
�

DSi�DHi
T

R

�
i A0

i (kg/mol.h) E0
i (J/mol) A0

i (kg2/mol2.h) Ec
i (J/mol) DHi (J/mol) DHi (J/mol.K)

1 5.9874 � 105 8.3234 � 104 4.3080 � 107 7.8722 � 104 8.0287 � 103 �3.3005 � 101

2 1.8940 � 1010 9.7431 � 104 1.2110 � 1010 8.6525 � 104 �2.4889 � 104 3.9505 � 100

3 2.8560 � 109 9.5647 � 104 1.6380 � 1010 8.4168 � 104 �1.6927 � 104 �2.9075 � 101

4 8.5778 � 1011 1.7585 � 105 2.3307 � 1012 1.5656 � 105 �4.0186 � 104 �6.0781 � 101

5 2.5701 � 108 8.9179 � 104 3.0110 � 109 8.5394 � 104 �1.3266 � 104 2.4390 � 100

Table III. Species Balance in Terms of Rates from Table I

Component (i) Species balance for i

W rW ¼ R2 þ R3 þ R4 þ R5 þ R11 þ R12

� (R1 þ R8)

CL rCL ¼ �(R1 þ R6 þ R7)

CD rCD ¼ �(R8 þ R9 þ R10)

AA rAA ¼ �(R11 þ R12)

P1 rP1
¼ R1 � (2.R2 þ R3 þ R4 þ R6 þ R9 þ (R11)

B-ACA rB�ACA ¼ R3 þ R4 þ 2.R5 þ R7 þ R9

þ 2R10 þ R12

T-NH2 rT�NH2 ¼ R2 þ R6 þ R8 þ R9 � (R5 þ R12)

T-COOH rT�COOH ¼ R2 þ R6 þ R8 þ R9 þ R11 � R5

T-AA rT�AA ¼ R11 þ R12
Figure 1. Experimental semibatch reactor used for nylon-6 hydrolytic

polymerization.

4 J. APPL. POLYM. SCI. 2012, DOI: 10.1002/APP.37697 WILEYONLINELIBRARY.COM/APP

ARTICLE



and is held in this value until the end of the process. Table VI

presents how the pressure profile was defined in the simulator.

As the responses are dependent on a set of chemical reactions,

it is interesting to know if the proportion of reactants in the

charge can significantly affect them. To study this, a set of three

25–1 designs was proposed. They have all the same operational

variables of the 26–2 experimental design (HP, LP, and T), but

instead of the quantity of reactants, the charge variables were

the molar ratio between reactants. Each one of the designs has

the mass of one of the reactants maintained constant and varies

the other two. The experimental designs were denominated as A

(e-caprolactam constant), B (water constant), and C (acetic acid

constant). Their factors and values for each level are available in

Table VII.

The results for the 26–1 and three 25–1 fractional factorial

designs, obtained by simulation, were analyzed by using of the

software STATISTICA (Statsoft v. 7.0).

Screening of Factors Affecting Nylon-6 MWN

For screening purposes, the responses obtained for conversion

of e-caprolactam were evaluated by using of the Pareto chart

(Figures 2–5). At the Pareto chart, all factor effects are

represented by horizontal bars. In fact, the bars do not show

the value of the effects, but t(m), which is the ratio of the

estimated effects to the standard deviation and m is the number

of degrees of freedom. The physical interpretation of effect

values is that they are the measure of the change in the response

when the factors are moved from an inferior to superior level.

There is also a vertical line that represents the effect’s limit of

significance; bars before that line are considered not statistically

significant. The line position depends on the chosen confidence

limit, in this study, 95% (P ¼ 0.05) for all cases.

As can be seen in all the Pareto charts, the reaction temperature

(T) was considered statistically significant in all the experimen-

tal designs performed. The 26–2 planning indicated that acetic

acid was also relevant to MWN response, information con-

firmed in the 25–1A and B designs, in which the relations AA/

CL and AA/W appeared as significant. In 25–1C design, where

the quantity of acetic acid was not changed, none of the reac-

tants ratio to AA appeared to be significant but a different fac-

tor, HP, was revealed to be important to MWN build up.

It was expected that the low pressure value could have some

influence on this response, as it affects water evaporation and,

consequently, the polycondensation reaction equilibrium. As can

be seen in the results, it did not happen, maybe because either

the chosen range was too restrict or the operational time in low

pressures was too short to have significant effect on MWN

response.

Considering preliminary experimental designs results for MWN,

a complete 23 factorial design was proposed having T, HP, and

AA/CL as variables, to obtain a statistical model. Decodified val-

ues for the variables can be found in Table VIII. As the AA/CL

and AA/W ratios were both important and had similar effects in

magnitude and signal, water and e-caprolactam mass were

established at 31.84 and 1000 g, respectively, and only AA/CL

ratio was changed. The low pressure value was also set at 0.5

kgf/cm2 (level zero value of the previous plannings). Table IX

outlines the experimental design and results obtained for

MWN.

Figure 6 depicts the Pareto chart for MWN considering a confi-

dence level of 95%. In this time, the analysis was performed

Table IV. Factors Used in the 26–2 Fractional Design

Level

Factor �1 0 1

High pressure (HP, kgf/cm2) 3 5 7

Low pressure (LP, kgf/cm2) 0.25 0.50 0.75

Reaction temperature (T, �C) 240 260 280

Mass of e-caprolactam(mCL, g) 800 1000 1200

Mass of water (mW, g) 25.70 32.12 38.54

Mass of acetic acid (mAA, g) 0 3.1 6.2

Table V. Data Inserted in the Simulator to Define Temperature Profile for

Each T Level Used in All Fractional Factorial Designs

Level

Time (h) �1 0 1

0 25 25 25

1 40 60 80

2 130 150 170

3 240 260 280

Table VI. Pressure Profile Inserted in Simulator

Time (h) Pressure (kgf/cm2)

0 1

1 1

2 HP

3.5 HP

5 LP

Table VII. Factors and their Levels Used in the 25–1 Experimental Designs

Level

Experimental design Factor �1 0 1

All HP 3 5 7

LP 0.25 0.5 0.75

T 240 260 280

A (mCL ¼ 1000 g) W/CLa 0.1 0.2 0.3

AA/CLa 0.002 0.006 0.01

B (mW ¼ 31.84 g) CL/Wa 4 5 6

AA/Wa 0.01 0.03 0.05

C (mAA ¼ 3.18 g) CL/AAa 113.3 167 200

W/AAa 16.6 33.3 50

aMolar ratio.
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considering a two-way interaction model. According to the esti-

mated effects, the reaction temperature (T) and the acetic acid

concentration (AA) were the most important ones (largest abso-

lute magnitudes). After the screening process, almost all factors

have shown to be statistically significant, the only exception was

the interaction between AA and HP.

As expected, the temperature has positive effect on MWN

because interferes in the polymerization kinetics, increasing

reaction rates and, consequently, the molecular weight. The ace-

tic acid works in the opposite way, limiting the molecular

weight. This can be explained because the nylon-6 chains have

two reaction sites, NH2 and COOH terminal groups, and, when

the former reacts with acetic acid, not only one of the sites

is deactivated but also the molecule chain cannot grow up by

polyaddition mechanism.

Presumably, the effect of T and AA/CL interaction is important

due to the rising of acetic acid conversion by temperature

increasing. The negative effect of HP on MWN is probably

because the higher the pressure, less acetic acid is lost by vapor-

ization and more of this reactant, which has negative effect on

MWN, is present in the reaction medium.

Simplified Model for MWN

A new statistical analysis was made neglecting the insignificant

effect and a model with the significant effects was generated.

Table X outlines the calculated effects on MWN and the coeffi-

cients of the model, exposed on eq. (1) and where the variables

T, HP, and molar ratio AA/CL are in the coded form.

MWN ¼ 14043:6þ 5362:5� T � 1688:6

�HP� 2958:3� ðAA=CLÞ � 1492:7

�HP� T � 2519:3� T � ðAA=CLÞ ð1Þ

To ensure that the generated model has statistical significance,

the analysis of variance (ANOVA) was performed for MWN,

which can be found in Table XI. The response has a correlation

coefficient (R2) equal to 0.9937, value very close to unit and

that indicates good adjustment to data. The F-test shows that

the model is reliable, as the calculated F-value is 10.57 times

larger than the listed value for a 95% confidence level (as a

practical rule, the model has statistical significance when the

calculated F-value is at least five times larger than the listed

value). The accuracy of the model can be visualized by a com-

parison between the responses predicted by the deterministic

model (simulation) and those calculated by the reduced model,

depicted in Figure 7.

As the model has a good agreement with simulation data, it can

be used in the future for optimization purposes, when validated

with experimental data. In polymerizations processes, more

Figure 2. Pareto chart of effects for MWN in design 26–2 [Color

figure can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]

Figure 3. Pareto chart of effects for MWN in design 25–1 A [Color

figure can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]

Figure 4. Pareto chart of effects for MWN in design 25–1 B [Color

figure can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]

Figure 5. Pareto chart of effects for MWN in design 25–1 C [Color

figure can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]
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important than to attain a product with elevated molecular

weight is having a material with adequate properties. For exam-

ple, long polymer chains are related to an increasing of viscosity

and this can became a real problem in some cases. The eq. (1)

can be used to find the best set of variables that will give the

desired value of MWN and that attends some specified condi-

tions like higher conversion (working with the XCL model),

lower temperature, etc.

Surface Response Analysis for MWN

Due to the reliability of the statistical model [eq. (1)], it was

used to generate the response surfaces plotted in Figures 8–10.

These kinds of graphs map the behavior of the dependent vari-

able when varying the independent variables in the available

range. Thus, they are useful for identification of the optimal

region, as they indicate to which direction the dependent vari-

able gets near to the optimum. The color/tones in the graph

illustrate the magnitude of the response: higher values are found

in the dark tones region, while the lower values are represented

by lighter colors. Above the surface, there is its projection,

which provides another way to visualize response values.

As there are three factors and each graph can represent only

two independent variables at a time, two variables were selected

to vary at a time and the other one was maintained at central

point.

In this case, it can be seen that a maximum global could not be

found for the studied range. This was expected, as this is not a

quadratic model. The reaction temperature, T, has a major role

in MWN formation, when compared with the other two factors

(HP and AA/CL). This can be easily noted when they are held

constant and only temperature varies: there is an accentuated

inclination when moving from a level to another. In addition,

when the reaction temperature is set in the lowest value, a mon-

otonic feature can be observed and the MWN cannot reach val-

ues higher than 10,000 no matter in which level is the other

variable (confirming the importance of reaction temperature

interaction with the other factors). In general, the global analy-

sis of the three surface responses indicates that increasing of

MWN is promoted by higher values of T and lower values of

HP and AA/CL.

When choosing the work range for T, it has to be taken into

account that simulations at central point revealed that e-capro-
lactam consumption starts only after reactor temperature

reaches � 200�C; therefore, the lowest level had to be above

that value. Also, high temperatures are not desirable when

working with polymers. Thermogravimetry analysis in litera-

ture16 indicated that nylon-6 degradation is accentuated after

350�C; thus, the superior limit needed to be a value below it

and considering a margin of safety.

Screening of Factors Affecting e-Caprolactam

Conversion (XCL)

Figures 11–14 show the Pareto charts for 26–2, 25–1A, B, and C

fractional factorial designs for XCL response.

According to the Pareto charts, HP is statistically significant in

all of the experimental designs performed. Besides HP, it

appeared as relevant factors the ratio between acetic acid to e-
caprolactam (25–1 A) and the mass of acetic acid in 26–2 design.

Even the reaction temperature did not appear as statistically sig-

nificant at 95% confidence, we decided not to discard it,

because the designs indicate that T has the third or second

most important standard effect on XCL and also, in the first

Table VIII. Factors Used in the 23 Fractional Design

Level

Factor �1 0 1

High pressure (HP, kgf/cm2) 3 5 7

Reaction temperature (T, �C) 240 260 280

AA/CL (molar ratio) 0.002 0.006 0.010

Table IX. 23 Design Matrix Used for Determining of MWN Model

Factor Response

Run T HP AA/CL XCL MWN

1 �1 �1 �1 64.90 9004

2 1 �1 �1 79.21 28,027

3 �1 1 �1 86.45 9525

4 1 1 �1 87.09 22,029

5 �1 �1 1 81.84 9039

6 1 �1 1 83.40 17,436

7 �1 1 1 89.30 7734

8 1 1 1 87.59 10,709

9 (C) 0 0 0 88.36 12,890

Figure 6. Pareto chart of effects for MWN (at 95% confidence level)

[Color figure can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]

Table X. Effect Estimates on MWN from Results of the 23 Design:

Variables with Significant Effectsa

Factor Effect t(3) P Coefficient

Mean/intercept 14,044 46.48 0.0000 14,043.6

T 10,725 16.73 0.0005 5362.5

HP �3377 �5.27 0.0133 �1688.6

AA/CL �5917 �9.23 0.0027 �2958.3

T � HP �2985 �4.66 0.0187 �1492.7

T � AA/CL �5039 �7.86 0.0043 �2519.3

aSignificant factors (P < 0.05) for a 95% confidence level.
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design, its absolute standard effect is very near to the cut-off

line for significant effects.

Considering preliminary experimental designs results for XCL, a

complete 23 factorial design was proposed having T, HP, and

AA as variables to obtain a statistical reduced model. All the in-

significant variables were set at the same value of level zero in

previous experiments. As these were the same factors analyzed

to obtain the MWN model, it was used the same experimental

design, but only HP appeared as significant for XCL, and it was

not possible to attain a significant model working only with it.

Supposing that the lack of adjustment of the model was due to

a quadratic behavior, a new central composite design was per-

formed including the eight factorial points and the central point

(both of the previous planning) plus a star configuration (six

axial points), totalizing 15 runs. The star configuration requires

2n additional runs besides those of the factorial design, where n

is the number of independent variables. The purpose of intro-

ducing these additional runs is to generate a quadratic model

for responses; they are related to the process response when all

factors are in the central point except one, which is at 6a level.

The a value is calculated based on the number of factors and

corresponds to (2n)1/4. In this case, there are three factors;

therefore, a ¼ 1.682.

After analyzing the obtained data, it was observed that a statisti-

cal significant model was not achieved. With the purpose of

obtaining a good reduced model for e-caprolactam conversion,

some changes in the design were performed: HP and reaction

temperature (T) ranges were reduced, and the central point was

dislocated. The values of the factors and obtained results for the

final composite design are shown in Tables XII and XIII,

respectively.

Figure 15 depicts the Pareto chart for XCL considering a confi-

dence level of 95%. The analysis was performed considering lin-

ear (L) and quadratic (Q) main effects plus two-way interac-

tions model. According to the estimated effects, linear HP, T,

and AA/CL effects are the most important to XCL response,

respectively. HP and T quadratic terms and interaction between

T and AA/CL were also considered relevant.

Simplified Model for XCL

Considering composite design results, a new statistical analysis

was made neglecting the insignificant effects and a model con-

sidering only significant effects was generated. Table XIV out-

lines the calculated effects on XCL and the coefficients of the

model, exposed on eq. (2). It is important to emphasize that

the equation variables are in the coded form.

XCL ¼ 8:9889þ 0:6943�HP� 0:1219�HP2

� 0:4052� T � 0:3186� T 2þ
þ0:3095� AA� 0:1636T � AA ð2Þ

When dealing with conversion, the optimal value is always the

highest and the eq. (2) can be used to help the identification of

the best set of T, AA/CL, and HP values that leads to desired

XCL underspecified conditions.

Table XV presents the ANOVA for XCL. The response has as cor-

relation coefficient (R2) equal to 0.9812, which means that 99%

Table XI. Analysis of Variance for the MWN Regression: Reduced Model (ANOVA)

Source of variation Sum of squares Degrees of freedom Mean square F-value F-test/F0.95;5.3

Regression 391,473,774 5 78,294,755 95.307 10.57

Residual 2,464,515 3 821,505

Total 393,938,289 8

R2 ¼ 0.9937, F0.95;5,3 ¼ 9.0135 (listed).

Figure 7. Comparison between MWN responses obtained by computa-

tional simulation (observed values) versus predicted values by the reduced

statistical model [Color figure can be viewed in the online issue, which is

available at wileyonlinelibrary.com.] Figure 8. Response surface for MWN as a function of HP and T.
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of the variance is explained by the model. The F-test confirmed

that the model is reliable, as the calculated F-value is 14.55

times larger than the listed value for a 95% confidence level.

The accuracy of the model can be visualized by a comparison

between the responses predicted by the deterministic model

(simulation) and those calculated by the reduced model,

depicted in Figure 16.

Response Surface Analysis for XCL

The fitted response surfaces considering the model for conver-

sion are shown in Figures 17–19. When dealing with conversion,

the optimal values are always those with the highest values. As a

quadratic model was used, there was a probability to find an

optimal point for XCL in the studied ranges. Although the

graphs did not show an optimal global, it was possible to visu-

alize optimal tendencies.

It can be seen that higher HP values always lead to higher con-

versions, which can be explained by its effect on evaporation

rates, preventing loss of monomer. The reaction temperature

(T) has an accentuated quadratic behavior, and it is possible to

identify its optimal value about 270�C (þ1 in codified value) in

Figures 17 and 19. Low temperatures are not favorable to e-cap-
rolactam reaction, on the other hand, high temperatures acceler-

ate kinetics reaction but results in a rising of evaporation rates,

reducing the availability of monomer in the reactor. The opti-

mal T values are those that better conciliate these two effects to

obtain a maximum XCL.

The AA/CL has positive effect on XCL when moving from an in-

ferior to a superior level, although changes on response are

almost indistinguishable at the superior T level. The effect on

conversion is probably due to the acid catalyzed kinetics reac-

tion, while the interaction with temperature can be explained by

its influence on acetic acid evaporation.

One of the uses of the model can be the multiobjective optimi-

zation problem when it is desirable to find the best set of condi-

tions that allows the process to achieve a specified MWN,

whereas keeping higher conversion values. It is important not to

ignore that each model was designed to work in a specific range

for each independent variable, so the optimization have to con-

sider only the range valid for both models.

Figure 9. Response surface for MWN as a function of AA/CL and T.

Figure 10. Response surface for MWN as a function of AA/CL and HP.

Figure 11. Pareto chart of effects for XCL in design 26–2 [Color figure

can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]

Figure 12. Pareto chart of effects for XCL in design 25–1 A [Color

figure can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]
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CONCLUSIONS

This work pointed out that experimental designs and RSM

combined with modeling and simulation can be applied for

optimization of complex processes like the hydrolytic polymer-

ization of nylon-6 in a semibatch reactor, in which there are

many parallels reactions occurring at the same time and profiles

of pressure and temperature were applied.

Factorial designs were applied for the screening of the most rel-

evant factors in the studied process considering the final mono-

mer conversion (XCL) and MWN as responses. It was found

that the temperature reaction (T), the pressure in the high pres-

sure stage (HP), and the ratio of acetic acid to e-caprolactam
(AA/CL) have the most significant effects for both responses.

The experimental design allowed the development of reduced

models [eqs. (1) and (2)] for responses prediction and their

reliability was proved by ANOVA. At the end, response surfaces

were obtained by nonlinear multiple regression of the data.

They have showed an important tool for optimization purposes

by allowing an easier identification of the optimum values,

when compared with a rigorous model. It is noteworthy that,

even if the same set of significant variables was obtained for the

two evaluated responses, the variables work in opposite way on

each response in the studied ranges. Although higher pressure

values leads to higher monomer conversion, the MWN is

Figure 13. Pareto chart of effects for XCL in design 25–1 B [Color figure

can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]

Figure 14. Pareto chart of effects for XCL in design 25–1 C [Color figure

can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]

Table XII. Factors Used in the 23 Fractional Design

Level

Factor �1.682 �1 0 1 1.682

High pressure
(HP, kgf/cm2)

4.32 3 5 7 7.68

Reaction
temperature
(T, �C)

243 250 260 270 277

AA/CL
(molar ratio)

0.0009 0.003 0.006 0.009 0.0111

Table XIII. Central Composite Design Used for Determining of XCL

model

Factor Response
Run T HP AA/CL XCL

1 �1 �1 �1 87.71

2 �1 �1 1 88.74

3 �1 1 �1 87.44

4 �1 1 1 87.78

5 1 �1 �1 89.31

6 1 �1 1 90.12

7 1 1 �1 88.62

8 1 1 1 88.81

9 �1.682 0 0 87.34

10 1.682 0 0 89.89

11 0 �1.682 0 88.74

12 0 1.682 0 87.38

13 0 0 �1.682 88.31

14 0 0 1.682 89.41

15 (C) 0 0 0.000 89.20

Figure 15. Pareto chart of effects for XCL in central composite design

[Color figure can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]
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Table XIV. Effect Estimates on XCL from Results of the Composite Design: Variables with Significant Effects

Factor Effect Standard error t(8) P Coefficient

Mean/intercept 88.9889 0.0903 985.833 0.0000 88.9889

HP(L) 1.3886 0.0893 15.546 0.0000 0.6943

HP(Q) �0.2438 0.1051 �2.320 0.0490 �0.1219

T(L) �0.8105 0.0893 �9.073 0.0000 �0.4052

T(Q) �0.6371 0.1051 �6.063 0.0003 �0.3186

AA(L) 0.6190 0.0893 6.930 0.0001 0.3095

T(L) � AA(L) �0.3271 0.1167 �2.803 0.0231 �0.1636

Table XV. Analysis of Variance for the XCL Regression: Reduced Model

(ANOVA)

Source of
variation

Sum of
squares

Degrees of
freedom

Mean
square F-value

F-value/
F0.95;6.8

Regression 11.3499 6 1.8917 69.442 14.550

Residual 0.2179 8 0.0272

Total 11.5678 14

R2 ¼ 0.9812, F0.95;6,8 ¼ 4.7725 (listed)

Figure 16. Comparison between XCL responses obtained by computational

simulation (observed values) versus predicted values by the reduced statis-

tical model [Color figure can be viewed in the online issue, which is avail-

able at wileyonlinelibrary.com.]

Figure 17. Response surface for XCL (%) as a function of T and HP.

Figure 18. Response surface for XCL (%) as a function of AA/CL and HP.

Figure 19. Response surface for XCL (%) as a function of AA/CL and T.
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reduced in these cases and the same behavior is observed with

AA/CL. Changing the reaction temperature from an inferior to

a superior level has positive and strong effect on molecular

weight, but its effect on conversion may vary and an optimal

value can be found in the region around level þ1 (270�C).

In this study, only MWN and XCL were evaluated, but other

responses might have been considered in the optimization as, for

example, the concentration of undesirable CD and reaction time.

Additionally, some limitation was observed regarding the analy-

sis of the e-caprolactam conversion behavior, so that it may

bring difficulties to use such variable to control and optimize

the process. Bearing this in mind, this work looked for to

understand more closely the behavior of e-caprolactam conver-

sion as well to investigate the possible use of the temperature

profile of the reactor as a potential variable to control and opti-

mize the process.

NOMENCLATURE

AA Acetic acid
AA/CL Molar ratio of acetic acid to e-caprolactam
CD Cyclic dimer
CL e-caprolactam
HP Pressure of the high pressure stage (kgf/cm2)
LP Pressure of the vacuum stage (kgf/cm2)
mi Mass of component i (g)
MWN Number average molecular weight
n Number of independent variables
T-NH2 Amine termination
T-COOH Acid termination
T-AA Acetic acid termination
XCL Conversion of e-caprolactam (%)
W Water
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